The Frugal Architecture in
Practice

Artem Polishchuk

About me

e Solution Architect at Ciklum
e 12 years of experience.
e Work more than 7 years with Cloud
e Frugal by default
My blog: My LinkedIn:
https://bool.dev/blog https://www.linkedin.com/in/apolischuk/

!°

v’g..,: '

35"15#‘

https://bool.dev/blog
https://www.linkedin.com/in/apolischuk/

Agenda

01

02
03
04

What is the Frugal
Architecture

Phase 1: Design

Phase 2: Measure

Phase 3: Observe

O 5 Common Pitfalls
O 6 Key takeaways
07 o

Did you care about cost efficiency when you
design your architectures?

The passionate, functional, micro-serviced approach

Does this
+echnoloay look-
aood on my CV?

Blame and
decline

B Yes

Resumé Driven Add o tech
Development i

O RLY? @ThePracticalDev

What is the Frugal Architecture?

(by Dr. Werner Vogels, CTO of Amazon)

The Frugal Architecture approach advocates for a
sustainable, cost-effective, and resource-efficient
architectural design and implementation methodology.

Phase 1:
Design

1. Make cost a
non-functional
requirement.

2. Systems that
last align cost
to business.

3. Architecting is
a series of
trade-offs.

Phase 2:
Measure

4. Unobserved
systems lead to
unknown costs.

5. Cost-aware
architectures
implement cost
controls.

Phase 3:
Observe

6. Cost
optimization is
incremental.

7. Unchallenged
success leads
to
assumptions.

p
Ik

1

)\ .
- e ’
\’J \ l\' \ 6" ')

| $]
’w@“/%k ¢

Take your hat off, boy.
That's a dollar bill!
11

https://thefrugalarchitect.com/laws/

Phase 1: DeS|gn

Law 1: Make Cost a Non-functional Requirement

Audit Logs

= e
S~

Authorization

Encrypﬁon

-

Authentication

‘ Acce«;;llallﬁy

/

To ensure that a system is desighed,
developed, and operated within budget.
You should consider cost as
non-functional requirement (NFR)

|
|

‘ U9abili+y - Horizontal Scdling Vertical Scaling
| Learndbiity | | Consistency | .
—J Non-Functional / \

Kequir'emen-l's

uP-hme

\\\o

Mairttainabiity |
v

; Disaster Kecover\/

La+ency

—
S

Cost Efficiency

Action:

Response Time Throuahpu-f

Modularity

Tes+abili+y

Code Readability

Take into account cost limitations

when design the Architecture

Law 2: Systems That Last Aligh Cost to Business

Design systems that grow with the business and
keep expenses under control to avoid problems
with growth

FinOps Routine

Env Cost for 100 users - $3

Action:
e Be aware of how the revenue is
calculated for Business.
e Your architecture documents should
include cost indications.

Env Cost for 1000 users - $30

Env Cost for
10 000 Users - $1600

/}Juj WHYYYYYYY???!

Reference:
Simplified revenue formula:

Revenue = subscription cost-(Infrastructure
cost / user count)

Example: Big picture diagram documentation

Project cloud

]
|
= Customer Server infrastructure 4 @ S 'LQ
&

> b -
. l t used for auth

i store device configs Azure web app
% Service bus Azure B2C

— —) 4 read data from DB
TR, \:é >;‘j
7,

Azure Function Redis cache Cosmos DB (Mongo)

Physical devices a_ Event hub

system status

> WiFi Gateway

loT device

Name of module Description Approximate cost for MVP per

month
1 Physical devices loT device and Wi-Fi gateway that is used for external Not in scope of our product
communication with loT devices: Configuration, device status, etc.
2 Event Hub Inbound queue that is used to store device events. Not in scope of our product
3 Azure Function Function that subscribe on Event hub messages, then store themin $0 (consumption plan)
DB & send to outbound queue
4 Redis Cache Cache for store data that query frequent by system $16.06 (Basic CO)
5 Azure Cosmos DB Primary database $25.86 (400 Request units)
6 Azure Web app Web interface to manage gateways/devices and browse logs $73.00 (S1)
7 Azure B2C Customer identity access management (CIAM) Free (for first 50k monthly
active users)
8 Azure Service bus Outbound queue that clients use to receive device events. $10 (Standard tier, First 13M
ops/month free)
9 Azure Blobs Used for storing device config files S
10 Customer cloud External infrastructure to receive messages from loT Not in scope of our product
infrastructure

Total $125.92

Law 3: Architecting is a Series of Trade-offs

i receive: you receive:
Fr_ugal_it_y is about maximizing value, not just Budget and A Pyramid of PowerPoint
minimizing spend. And to do that, you need to Deadlines from an Slides That Explain
determine what you're ready to pay for. e el ExcHiing andEosa

’/

Action:
Include cost to your trade-offs

analysis as part of Architecture
Decision Record (ADR)

>
/4

Architect

ADR Template

Status
Context
Decision

Options

Consequences

Approximate Cost

Include cost as part of Architecture
Decision Record

ADR template examples:

https://bool.dev/l/1558

https://bool.dev/l/1558

ADR 016: Outbound queue

Status Accepted
Context The outbound queue to send messages for the clients
Decision Single Service bus instance for all of the regions/customers, in future switch to a Service bus
instance per region when the load and amount of clients will dramatically increase
Options <Options list>
Consequences Positive:
<list>
Negative:
<list>

Approximate Cost

$10 approximate cost for MVP

$677.08 per month for a premium Service Bus instance with one unit in Post-MVP Stage. The
region with a tiny load could use the standard tier ($10).

Note: We have to pay attention some instances with the standard tier could be more
expensive than Premium because standard tier has a cost per message.

ADR 006: Database - Option 4 Cosmos DB Mongo

Total data Workload

Number stored in mode & : Multi-region Price per
of . Sample item : Comment
: transactio percentage writes month
regions
nal store of peak
Item size-1KB
Variable Finds/sec-1
1 10 GB ’ Inserts/sec-200 no $27.67 Most likely situation for the MVP
30%
Updates/sec-5
Deletes/sec-1
Variable, . Most likely situation for the
L ek 30% Fizhm s $50.17 future with 1 region.
Finds/sec-2000 i - -
Variable Inserts/sec - no Most llkely S|tuat|qn for the
1 1000 GB or $275.17 future with 1 region and
30% 2000 . .
increased size of storage.
Variable dpeeizsisze-e Future stage with enabled
4 100GB ’ Deletes/sec-1 yes $744.99 . . .
10% multi-region writes
1 1000GB Steady Item size-5 KB no $2,985.20 | The worst scenario with 1 region
Finds/sec-2000
Inserts/sec - . "
4 1000GB Steady 2000 yes $12,300.05 e worst scenario with 4
Updates/sec-5 regions and multi-region writes
Deletes/sec-1

Price Calculators

You can calculate costs for your solutions in cloud by via following tools:

AWS Azure GCP
..z...
@,’4{?@ i !!’5‘3
shay g
g égf
$ co0sd 2% 320 s *°33° S
000 w.*.?i' §E; .z’ ﬁ;i;f:
@ R ST .;!
https://calculator.aws/ https://azure.microsoft.com/e https://cloud.google.com/prod

n-us/pricing/calculator ucts/calculator?hl=en

https://calculator.aws/
https://azure.microsoft.com/en-us/pricing/calculator
https://azure.microsoft.com/en-us/pricing/calculator
https://cloud.google.com/products/calculator?hl=en
https://cloud.google.com/products/calculator?hl=en

Phase 2: Measure

Law 4: Unobserved Systems Lead to Unknown
Costs

If you can’t measure it, you can’t manage it.

Action:
Use tools for tracking cost and
utilization of resources.

Example: NewRelic dashboard

Cost Per Service Cost Per Service Timeseries
Since 6 months ago Since 25 weeks ago
azure app service 1310.13
storage 1237.47
virtual machines 762.83
=
®
api management 413.93 @
® ° ®
AWS CUDOS (Cost and Usage Azure: Cost Management 015, Claur Bllng Feseris
Dashboards Operations Solution) Dashboard '

@???.E%

pigs B

&HeE;

https://bool.dev/I/1559 https://bool.dev/I/1560 https://bool.dev/I/1565

https://bool.dev/l/1559
https://bool.dev/l/1560
https://bool.dev/l/1565

Law 5: Cost-Aware Architectures Implement Cost
Controls

J

E-commerce

9y9+em

Tier |

Order Management
System

|nven+ory Manaaemem

Paymen+ 6m+eway—0

User Authentication

\
N

i

|
[J\:

)

Product Reviews

Recommendation Engine

Customer Support Chat

)

Tier 2

P—

¢

v

Analytics and Insights

Push Notifications

Marke+in9 Campaigns

Tier 3

Evaluate your system components
by criticality.

Action:

Cost optimisation must be measurable and
tied (like tier 1, tier 2, tier N) to business
Impact.

Example: E-commerce system

e Tier1: Core Components, scale
regardless of cost.

e Tier 2: Components are important
but can be temporarily scaled down
without major impact.

e Tier 3: Components are
“nice-to-have”; make them low-cost
and easily controlled

Phase 3: Observe

| DN'T 6ET (T...

AFTER ALL TRE
BUDGET CUTH To
STREANLINE
THE WORK FORCE,
WHN AREN'T

WE NOVING
FRSTER ?

e & S L e e
WA orer o uivegan WILEN (K-8 6 ANeTRUIUK. U&T

Law 6: Cost Optimization is Incremental

| DON'T KNOW WHO YOU ARE

Making sure your systems are cost-effective is an
ongoing process. It's not something you do once and
then forget about.

Action: ’ ! y
You need to keep checking your systems ?

to find ways to make them even more
efficient
BUT | WILL FIND YOU
OPTIMIZEYOU

Law 7: Unchallenged Success
Leads to Assumptions

Don't Assumel! Just because a solution worked in the past
doesn’t mean it’s still the best choice today.

Regularly challenge your assumptions and consider alternative Why i shouldn't
tools and technologies that could be better suited to your use .NET again
current needs.

After allj why not?

The relational database was first defined in
June 1970 by Edgar Codd, of IBM's San Jose
Research Laboratory. Codd's view of what
qualifies as an RDBMS is summarized in

Action:
Codd's 12 rules.

1. Periodically review the relevance and cost-effectiveness of

your technologies.
2. Embrace new tools, frameworks, or cloud services that may

offer better performance or lower costs.

relational db’
_ g

You still popular and modern

DevSecOps Tools Periodic Table

AiOps . Database Management . Release Management . DevOps Al-ML Analytics
- . o - Seuny

Colaboration . Enterprise Agi Planning . Source Control Management

. Tesiing

Container Orchestration . PaaS/Container Service . Value Stream Management

Continuous Integration . Public Cloud - Developer Portal

Configuration Automation IT Service Management

HashiCorp
Terraform

Atlassian

Nr p Q Cx

New Relic ! a S Quest Road sinnaker Checkmarx
SAST

https://digital.ai/learn/devse E
cops-periodic-table/ El

Elastic ELK Sonaty Mattermost a shiCorp Goople GKE AWS y) Cloud Foundry
Stack Nexi

92 (=] 95 98 0 Et

Azc Tr Cc Ga Gc

Azure Devops TRavis Cl circle CI Github Actions | Aws azure Gaagle Cloud
Code B

Sl p q |Cu . Dai

Sauce Labs Cucumber Imeter gita e utora Digital ai
opaz i inteligence

https://digital.ai/learn/devsecops-periodic-table/
https://digital.ai/learn/devsecops-periodic-table/

Common
Pitfalls

“What will cure all your problems?”

24

Pitfall: Ignoring Database Growth

Over time, databases grow unchecked with unused or
unnecessary data, leading to increased storage costs,
slower performance, and higher query execution times.

How to avoid:

e Move old unused data to cheaper storage
solutions (e.g., cold storage).

e Regularly evaluate schema designs, optimize
indexes, and normalize or denormalize where it
aligns with access patterns. Ensure data size and
types are right-sized.

e Continuously track database size and growth
trends to plan scaling and cost optimization.

Pitfall: Inefficient Use of |0O-Bound Operations

>| Add new instance

Relying on blocking 10
operations can reduce
available threads in the thread

pool, causing performance N Pick-up request by
bottlenecks and forcing ety hotanee
scaling to handle the load.

Con App
process Request? -~

Application Thread pool

How to avoid:

Runnable Thread
Use non-blocking or eraia Task Queue Thread
asynchronous |0 mechanisms New Task
(e.g., event lOODS in NOde-jS, Runnable Task 1 Task 2 Task 3 Task 4 Task 5 " TaskN LT
async/await in modern
la nguage S)) Runnable Thread

Runnable Thread

Pitfall: Over-Provisioning Resources

1. Provisioning more compute, storage, or
RAM than necessary wastes money ,
without delivering proportional benefits. ' PATCH 1 ‘

2. Create unnecessary environments,

DEV
‘ SANDBOq

increasing infrastructure cost.

=
- ~
How to avoid: —~

1. Implement right-sizing strategies and \\

Disaster
\ Recovery

auto-scaling policies. Review resource

utilization metrics frequently and apply load ' \ = |
testing to determine optimal configurations. i DEMO ' ﬁ LOAD l 7 /
2. Review env policy and keep only needed envs. INT "

Combine env’s on same service plan where

possible (like dev/QA envs)

1 DONT GAIIE (1L BN Pitfall: Lack of Team

Ownership

Teams without clear ownership of cost and
performance often make decisions that
might be not optimal.

How to avoid:

e Each Team member should
be aware how much we pay
for infrastructure.

e Apply FinOps principles to
make cost-efficiency an
ongoing focus.

1 JUST GODE NEW.TASKS

FmOps

Principles Domains & Capabilities ¥ Eoonction
o Understand Cloud Optimize Cloud
v’y Teams need to collaborate uantify Business Value p
Usage & Cost Q y Usage & Cost
e Decisions are driven by business value Y Data Ingestion Planning & + Benchmarking Architecting for Rate
of cloud Estimating Cloud utl Optimization
® Allocation &% Unit Economics
52 Forecasting z Workload Cloud
e Everyone takes ownership for their :_.; Reporting & Analytics £ Optimization o Sustainability
cloud usage @& Budgeting . .
icensing
+% Anomaly Management ® 2saas
@ FinOps data should be accessible

and timely
Manage the FinOps Practice

A centralized team drives FinOps

©

FinOps Practice Cloud Policy & FinOps Assessment € FinOps Tools & Services
© Operations & Governance
@ Take advantage of the variable cost FinOps Education & Invoicing & Chargeback Z= Onboarding Workloads & Intersecting Disciplines
model of the cloud S & Enablement

Core Personas Allied Personas Maturit
. :,;,‘*z? O 4

@ Engineering @ FinOps Practitioner B Finance € ITAM ® |TFM ® ITSM e Crawl

& Leadership & Procurement #& Product ® Security ® Sustainability

@ walk

@ Run

Use of this requires attribution to the FinOps Foundation under the cc by 4.0 license

https://www.finops.org/framework

https://www.finops.org/framework/

Pitfall: Ignoring
Technical Debt

Allowing technical debt to accumulate
reduces agility and increases costs to
implement future changes.

How to avoid:

Dedicate time in sprints to reduce
technical debt. Use static code
analysis and architectural reviews
to identify and address
problematic areas early.

Requests per Second

25000

20000

15000 [

10000

5000

Node v4.9.1 Node v6.9.5 Node v8.16.0 Node v10.15.3 Node v12.2.0 Node v12.2.0*

Pitfall: Over-Engineering

Solutions

Using complex architectures (e.g., microservices for How to avoid:

small-scale apps) adds unnecessary overhead in terms of

development, maintenance, and runtime costs. Start simple with monoliths or

modular monoliths, scaling into
distributed systems when reach
by specific scaling or team
requirements.

can we create a
service seleton
then add complexity
when required

we have to create service skeleton, lets
pply clean arch, CQS and DDD approac

DDD approach, Vertical Slice
Architecture could be a good
choice for monolith to preparing
the system for future splitting.

service skeleton creation task couldnt
take less then a few days of work

Fired: reason do not use best OOP
practice and clean architecture design

Example: Is Monolith Frugal?

Monolith Microservices

Web App / Mobile Web App / Mobile
App App
Application VS R e | :

Assets module | |Payments module| | .
‘ DB
s Payments ‘ Assets Service «----- Orders Service r------ [{ Payments Service Users Service
Ord dul " ' _
rders module Users module Orders Ueora
A4 A\ 4 \ 4 \ 4

Assets DB Orders DB Payments DB Users DB

Example: Is Monolith Frugal - Cost calculation

Baseline

e Use Azure App service from West Europe with
Windows Operating system

e Assume that App Service S1 (1 core, 1.75 GB
RAM, and 50 GB store) has throughput 1000 Newr v .. :
requests J& & e

e Assume that App Service S3 (4 cores, 7gb o e - s |
RAM, and 50 GB store) has throughput 4 000 %018 il |
requests s |

e Database & rest out of scope for current
estimation

App service plan Price per month Used for

S1 (1 core, 1.75 GB ram and 50 GB store) Windows $73 Microservice

S3 (4 cores, 7gb ram, 50 GB store) Windows $292 Monolith

Example: Is Monolith Frugal - Ramp up

Load Scenario Total Instances Cost per Total Instances Instances Cost
Requests (App Service S3) month (Breakdown) (App per
count Service S1) month

Baseline: 1k 4 000 1 S292 Assets: 1; Payments: 1; 4 $292

requests per Orders: 1; Users: 1

module

+ 4k requests for 8 000 2 S584 Assets: 5; Payments: 1; 8 S584

Assets Orders: 1; Users: 1

+ 10k requests for 18 000 5 S1460 Assets: 5; Payments: 11; 18 S1314

Payments Orders: 1; Users: 1

+ 80k requests for 98 000 25 S7300 Assets: 5; Payments: 11; 98 S7154

orders Orders: 81; Users: 1

Example: Is Monolith Frugal - Limitations

Resource Free Shared Basic Standard Premium (v1- Isolated
v3)
Scale out 1 shared 1 shared 3 dedicated? 10 dedicated® | 20 dedicated 100
(maximum for v1: 30 dedicated?
instances) dedicated for
v2 and v3.2

e To scale beyond 10 instances, you should move to a Microservices is cheaper than monolith
Premium / Isolated plan, which significantly
increases costs for monolith.

e With microservices, individual services can be scaled
independently, helping you reduce costs by only
scaling the most critical services (e.g., consider
premium for Orders service and Standard for rest).

High res image

Example: Is Monolith Frugal - Final Thoughts

Hidden Extra Costs with
Microservices:

e Infrastructure: APl Gateway, Message
Broker, and other components.

e Development: Higher complexity and
need for skilled engineers.

e Increased DevOps effort and
operational costs.

Best Fit:

e Microservices excel in complex or
growing systems.

e For simpler applications, monolithic
architectures may offer better cost
efficiency due to reduced complexity.

https://rogervdkimmenade.blogspot.com/2018/06/microservices-mindmap.html

Key takeaways

Find rich customer that don't care about
infrastructure cost

CANT TEBSIF JOKE OR

Key takeaways

Align architecture with business needs and
technical constraints.

Make cost a non-functional requirement and
consider as part of trade-off analysis
Monitor and optimize cost continuously

Design systems to scale efficiently and G |V E YO U R S E L F TO T H E

avoid unnecessary spending.

Avoid pitfalls that might increase your F R U GA L S | D E

infrastructure costs.

Q&A

Thank you!

Th- Th Th~ThaT S All Folks

