
1

The Frugal Architecture in
Practice

18 December 2024

Artem Polishchuk

2

About me

● Solution Architect at Ciklum
● 12 years of experience.
● Work more than 7 years with Cloud
● Frugal by default

https://bool.dev/blog https://www.linkedin.com/in/apolischuk/

My blog: My LinkedIn:

https://bool.dev/blog
https://www.linkedin.com/in/apolischuk/

33

Agenda

01
02
03
04

What is the Frugal
Architecture

Phase 1: Design

Phase 2: Measure

Phase 3: Observe

05
06
07

Common Pitfalls

Key takeaways

Q&A

4

Did you care about cost efficiency when you
design your architectures?

5

What is the Frugal Architecture?
(by Dr. Werner Vogels, CTO of Amazon)

The Frugal Architecture approach advocates for a
sustainable, cost-effective, and resource-efficient
architectural design and implementation methodology.

Phase 1:
Design
1. Make cost a

non-functional
requirement.

2. Systems that
last align cost
to business.

3. Architecting is
a series of
trade-offs.

Phase 2:
Measure
4. Unobserved

systems lead to
unknown costs.

5. Cost-aware
architectures
implement cost
controls.

Phase 3:
Observe
6. Cost

optimization is
incremental.

7. Unchallenged
success leads
to
assumptions.

https://thefrugalarchitect.com/laws/

6

Phase 1: Design

7

Law 1: Make Cost a Non-functional Requirement
To ensure that a system is designed,
developed, and operated within budget.
You should consider cost as
non-functional requirement (NFR)

Action:
Take into account cost limitations
when design the Architecture

8

Law 2: Systems That Last Align Cost to Business
Design systems that grow with the business and
keep expenses under control to avoid problems
with growth

Action:
● Be aware of how the revenue is

calculated for Business.
● Your architecture documents should

include cost indications.

Reference:
Simplified revenue formula:

Revenue = subscription cost - (Infrastructure
cost / user count)

9

Example: Big picture diagram documentation

10

Name of module Description Approximate cost for MVP per
month

1 Physical devices IoT device and Wi-Fi gateway that is used for external
communication with IoT devices: Configuration, device status, etc.

Not in scope of our product

2 Event Hub Inbound queue that is used to store device events. Not in scope of our product

3 Azure Function Function that subscribe on Event hub messages, then store them in
DB & send to outbound queue

$0 (consumption plan)

4 Redis Cache Cache for store data that query frequent by system $16.06 (Basic C0)

5 Azure Cosmos DB Primary database $25.86 (400 Request units)

6 Azure Web app Web interface to manage gateways/devices and browse logs $73.00 (S1)

7 Azure B2C Customer identity access management (CIAM) Free (for first 50k monthly
active users)

8 Azure Service bus Outbound queue that clients use to receive device events. $10 (Standard tier, First 13M
ops/month free)

9 Azure Blobs Used for storing device config files $1

10 Customer cloud
infrastructure

External infrastructure to receive messages from IoT Not in scope of our product

Total $125.92

11

Law 3: Architecting is a Series of Trade-offs

Frugality is about maximizing value, not just
minimizing spend. And to do that, you need to
determine what you’re ready to pay for.

Action:
Include cost to your trade-offs
analysis as part of Architecture
Decision Record (ADR)

12

Status
Context
Decision

Options

Consequences

Approximate Cost

ADR Template

https://bool.dev/l/1558

ADR template examples:

Include cost as part of Architecture
Decision Record

https://bool.dev/l/1558

13

Status Accepted
Context The outbound queue to send messages for the clients
Decision Single Service bus instance for all of the regions/customers, in future switch to a Service bus

instance per region when the load and amount of clients will dramatically increase

Options <Options list>

Consequences Positive:
<list>
Negative:
<list>

Approximate Cost $10 approximate cost for MVP
$677.08 per month for a premium Service Bus instance with one unit in Post-MVP Stage. The
region with a tiny load could use the standard tier ($10).
Note: We have to pay attention some instances with the standard tier could be more
expensive than Premium because standard tier has a cost per message.

ADR 016: Outbound queue

14

Number
of

regions

Total data
stored in

transactio
nal store

Workload
mode &

percentage
of peak

Sample item Multi-region
writes

Price per
month Comment

1 10 GB Variable,
30%

Item size - 1KB
Finds/sec - 1

Inserts/sec - 200
Updates/sec - 5
Deletes/sec - 1

no $27.67 Most likely situation for the MVP

1 100 GB Variable,
30% Item size - 1KB

Finds/sec - 2000
Inserts/sec -

2000
Updates/sec - 5
Deletes/sec - 1

no

$50.17 Most likely situation for the
future with 1 region.

1 1000 GB Variable,
30% $275.17

Most likely situation for the
future with 1 region and

increased size of storage.

4 100GB Variable,
10% yes $744.99 Future stage with enabled

multi-region writes
1 1000GB Steady Item size - 5 KB

Finds/sec - 2000
Inserts/sec -

2000
Updates/sec - 5
Deletes/sec - 1

no $2,985.20 The worst scenario with 1 region

4 1000GB Steady yes $12,300.05 The worst scenario with 4
regions and multi-region writes

ADR 006: Database - Option 4 Cosmos DB Mongo

15

Price Calculators

https://calculator.aws/

AWS

https://azure.microsoft.com/e
n-us/pricing/calculator

Azure

https://cloud.google.com/prod
ucts/calculator?hl=en

You can calculate costs for your solutions in cloud by via following tools:

GCP

https://calculator.aws/
https://azure.microsoft.com/en-us/pricing/calculator
https://azure.microsoft.com/en-us/pricing/calculator
https://cloud.google.com/products/calculator?hl=en
https://cloud.google.com/products/calculator?hl=en

16

Phase 2: Measure

17

Law 4: Unobserved Systems Lead to Unknown
Costs

If you can’t measure it, you can’t manage it.

Action:
Use tools for tracking cost and
utilization of resources.

18

Example: NewRelic dashboard

AWS CUDOS (Cost and Usage
Dashboards Operations Solution)

https://bool.dev/l/1559 https://bool.dev/l/1560

Azure: Cost Management
Dashboard

https://bool.dev/l/1565

GCP: Cloud Billing Reports

https://bool.dev/l/1559
https://bool.dev/l/1560
https://bool.dev/l/1565

19

Law 5: Cost-Aware Architectures Implement Cost
Controls

Action:
Cost optimisation must be measurable and
tied (like tier 1, tier 2, tier N) to business
impact.

Example: E-commerce system
● Tier 1: Core Components, scale

regardless of cost.
● Tier 2: Components are important

but can be temporarily scaled down
without major impact.

● Tier 3: Components are
“nice-to-have”; make them low-cost
and easily controlled

Evaluate your system components
by criticality.

20

Phase 3: Observe

21

Law 6: Cost Optimization is Incremental
Making sure your systems are cost-effective is an
ongoing process. It's not something you do once and
then forget about.

Action:
You need to keep checking your systems
to find ways to make them even more
efficient

22

Law 7: Unchallenged Success
Leads to Assumptions

● Don't Assume! Just because a solution worked in the past
doesn’t mean it’s still the best choice today.

● Regularly challenge your assumptions and consider alternative
tools and technologies that could be better suited to your
current needs.

Action:

1. Periodically review the relevance and cost-effectiveness of
your technologies.

2. Embrace new tools, frameworks, or cloud services that may
offer better performance or lower costs.

23

DevSecOps Tools Periodic Table

https://digital.ai/learn/devse
cops-periodic-table/

https://digital.ai/learn/devsecops-periodic-table/
https://digital.ai/learn/devsecops-periodic-table/

24

Common
Pitfalls

25

Pitfall: Ignoring Database Growth

Over time, databases grow unchecked with unused or
unnecessary data, leading to increased storage costs,
slower performance, and higher query execution times.

How to avoid:

● Move old unused data to cheaper storage
solutions (e.g., cold storage).

● Regularly evaluate schema designs, optimize
indexes, and normalize or denormalize where it
aligns with access patterns. Ensure data size and
types are right-sized.

● Continuously track database size and growth
trends to plan scaling and cost optimization.

26

Pitfall: Inefficient Use of IO-Bound Operations

Relying on blocking IO
operations can reduce
available threads in the thread
pool, causing performance
bottlenecks and forcing
scaling to handle the load.

How to avoid:

Use non-blocking or
asynchronous IO mechanisms
(e.g., event loops in Node.js,
async/await in modern
languages).

27

Pitfall: Over-Provisioning Resources

1. Provisioning more compute, storage, or
RAM than necessary wastes money
without delivering proportional benefits.

2. Create unnecessary environments,
increasing infrastructure cost.

How to avoid:

1. Implement right-sizing strategies and
auto-scaling policies. Review resource
utilization metrics frequently and apply load
testing to determine optimal configurations.

2. Review env policy and keep only needed envs.
Combine env’s on same service plan where
possible (like dev/QA envs)

28

Pitfall: Lack of Team
Ownership

Teams without clear ownership of cost and
performance often make decisions that
might be not optimal.

How to avoid:

● Each Team member should
be aware how much we pay
for infrastructure.

● Apply FinOps principles to
make cost-efficiency an
ongoing focus.

29
https://www.finops.org/framework

https://www.finops.org/framework/

30

Pitfall: Ignoring
Technical Debt
Allowing technical debt to accumulate
reduces agility and increases costs to
implement future changes.

How to avoid:

Dedicate time in sprints to reduce
technical debt. Use static code
analysis and architectural reviews
to identify and address
problematic areas early.

31

Pitfall: Over-Engineering
Solutions
Using complex architectures (e.g., microservices for
small-scale apps) adds unnecessary overhead in terms of
development, maintenance, and runtime costs.

How to avoid:

Start simple with monoliths or
modular monoliths, scaling into
distributed systems when reach
by specific scaling or team
requirements.

DDD approach, Vertical Slice
Architecture could be a good
choice for monolith to preparing
the system for future splitting.

32

Example: Is Monolith Frugal?

VS

33

Example: Is Monolith Frugal - Cost calculation

Let's Calculate!

Baseline
● Use Azure App service from West Europe with

Windows Operating system
● Assume that App Service S1 (1 core, 1.75 GB

RAM, and 50 GB store) has throughput 1 000
requests

● Assume that App Service S3 (4 cores, 7gb
RAM, and 50 GB store) has throughput 4 000
requests

● Database & rest out of scope for current
estimation

App service plan OS Price per month Used for

S1 (1 core, 1.75 GB ram and 50 GB store) Windows $73 Microservice

S3 (4 cores, 7gb ram, 50 GB store) Windows $292 Monolith

34

Scenario Monolith Microservices

Load Scenario Total
Requests
count

Instances
(App Service S3)

Cost per
month

Total Instances
(Breakdown)

Instances
(App
Service S1)

Cost
per

month

Baseline: 1k
requests per
module

4 000 1 $292 Assets: 1; Payments: 1;
Orders: 1; Users: 1

4 $292

+ 4k requests for
Assets

8 000 2 $584 Assets: 5; Payments: 1;
Orders: 1; Users: 1

8 $584

+ 10k requests for
Payments

18 000 5 $1460 Assets: 5; Payments: 11;
Orders: 1; Users: 1

18 $1314

+ 80k requests for
orders

98 000 25 $7300 Assets: 5; Payments: 11;
Orders: 81; Users: 1

98 $7154

Example: Is Monolith Frugal - Ramp up

35

Example: Is Monolith Frugal - Limitations

● To scale beyond 10 instances, you should move to a
Premium / Isolated plan, which significantly
increases costs for monolith.

● With microservices, individual services can be scaled
independently, helping you reduce costs by only
scaling the most critical services (e.g., consider
premium for Orders service and Standard for rest).

36

Example: Is Monolith Frugal - Final Thoughts
Hidden Extra Costs with
Microservices:

● Infrastructure: API Gateway, Message
Broker, and other components.

● Development: Higher complexity and
need for skilled engineers.

● Increased DevOps effort and
operational costs.

Best Fit:

● Microservices excel in complex or
growing systems.

● For simpler applications, monolithic
architectures may offer better cost
efficiency due to reduced complexity.

High res image

https://rogervdkimmenade.blogspot.com/2018/06/microservices-mindmap.html

37

Key takeaways

Find rich customer that don't care about
infrastructure cost

38

Key takeaways
● Align architecture with business needs and

technical constraints.
● Make cost a non-functional requirement and

consider as part of trade-off analysis
● Monitor and optimize cost continuously
● Design systems to scale efficiently and

avoid unnecessary spending.
● Avoid pitfalls that might increase your

infrastructure costs.

39

Q&A

40

Thank you!

